skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gashu, Kelem"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photorespiration is the second largest carbon flux in most leaves and is integrated into metabolism broadly including one-carbon (C1) metabolism. Photorespiratory intermediates such as serine and others may serve as sources of C1 units, but it is unclear to what degree this happens in vivo, whether altered photorespiration changes flux to C1 metabolism, and if so through which intermediates. To clarify these questions, we quantified carbon flux from photorespiration to C1 metabolism using 13CO2 labelling and isotopically non-stationary metabolic flux analysis in Arabidopsis thaliana under different O2 concentrations which modulate photorespiration. The results revealed that ~5.8% of assimilated carbon passes to C1 metabolism under ambient photorespiratory conditions, but this flux greatly decreases under limited photorespiration. Furthermore, the primary carbon flux from photorespiration to C1 metabolism is through serine. Our results provide fundamental insight into how photorespiration is integrated into C1 metabolism, with possible implications for C1 metabolic response to climate change. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. SUMMARY The metabolism of tetrahydrofolate (H4PteGlun)‐bound one‐carbon (C1) units (C1metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C1units in specific organelles and tissues. One possible source of C1units is via formate‐tetrahydrofolate ligase, which catalyzes the reversible ATP‐driven production of 10‐formyltetrahydrofolate (10‐formyl‐H4PteGlun) from formate and tetrahydrofolate (H4PteGlun). Here, we report biochemical and functional characterization of the enzyme fromArabidopsis thaliana(AtFTHFL). We show that the recombinant AtFTHFL has lowerKmandkcatvalues with pentaglutamyl tetrahydrofolate (H4PteGlu5) as compared to monoglutamyl tetrahydrofolate (H4PteGlu1), resulting in virtually identical catalytic efficiencies for the two substrates. Stable transformation ofArabidopsisplants with the EGFP‐tagged AtFTHFL, followed with fluorescence microscopy, demonstrated cytosolic signal. Two independent T‐DNA insertion lines with impaired AtFTHFL function had shorter roots compared to the wild type plants, demonstrating the importance of this enzyme for root growth. Overexpressing AtFTHFL led to the accumulation of H4PteGlun + 5,10‐methylene‐H4PteGlunand serine, accompanied with the depletion of formate and glycolate, in roots of the transgenicArabidopsisplants. This metabolic adjustment supports the hypothesis that AtFTHFL feeds the cytosolic C1network in roots with C1units originating from glycolate, and that these units are then used mainly for biosynthesis of serine, and not as much for the biosynthesis of 5‐methyl‐H4PteGlun, methionine, andS‐adenosylmethionine. This finding has implications for any future attempts to engineer one‐carbon unit‐requiring products through manipulation of the one‐carbon metabolic network in non‐photosynthetic organs. 
    more » « less